SHARING KNOWLEDGE
We provide tailored, product-specific training programmes that enable your operators and technical engineers to use and maintain our equipment at peak efficiency. These programmes can be given at our training institute in the Netherlands or on site throughout the world.

WORLDWIDE RENTAL FLEET
With offices, local agents and equipment yards throughout the globe, IHC IQIP currently has the largest and most diverse rental fleet available worldwide.

24/7 SUPPORT
We are 24/7 available to answer your operational and technical questions and can send out our service engineers to assist you on your project anywhere in the world.

MAINTENANCE
In need of maintenance, overhaul, repairs or in need of spare parts? IHC IQIP covers it all.

MIQIP PORTAL
We have developed cutting-edge digital systems that collect data and gain more insight into the piling process. This data can be accessed even remotely on mobile devices through our new MIQIP online portal.

MORE THAN JUST A HAMMER SUPPLIER
IHC IQIP is your full-service partner for all piling operations both onshore and nearshore. With over 30 years of experience working with clients, providing complete solutions for their complex construction projects, we have developed an unmatched track record. As a result, we know the challenges you face and have the knowledge, experience and flexibility to support you every step of the way.
Whether they are unloading LNG, oil carriers or berthing vessels, in order to provide an invaluable service, jetties must be able to withstand the full force of nature. Therefore, choosing and installing the foundation in an optimum way is critical. Using the Hydrohammer® can prove to be a perfect solution for installing either steel or concrete foundation piles.

RAKED PILE DRIVING
The majority of jetties consist of a series of bents of raked steel piles, driven into the ground. Traditional methods for raked pile driving are inefficient due to their inability to compensate for the loss of gravitational energy. This is not the case with the Hydrohammer®. By adjusting the gas pressure above the ram’s piston head, the ratio between the energy delivered by gravity and by gas energy can be adjusted. When driving raked piles, the gas pressure is increased to compensate for the loss of gravitational energy. Battered piles up to a rake of 1:1 (45 degrees) can therefore be driven at full force. It is even possible to drive horizontally.

LIGHTWEIGHT HAMMER
The ram weight of the Hydrohammer® S-series is relatively light in comparison to its competitors, and the hammer receives a substantial part of its power from acceleration due to the gas pressure on top of the piston. This greatly increases its handling and makes it ideal for constructing jetties.
When it comes to installing foundations and quay walls for complex maritime projects, steel structures are the best solution. As a result of its unique design, the Hydrohammer® is perfectly suited to driving steel piles and essential for a successful installation.

SPECIAL SOLUTIONS

Driving clutched piles is possible with a specially designed clutch sleeve. With this sleeve, the use of a follower or dolly to drive clutched piles is no longer required, making pile driving more cost-effective and efficient. The clutch sleeve also reduces the weight by up to 10t, depending on the follower length. To prevent additional costs incurred as a result of damage to the coating of piles during pile driving, IHC IQIP can equip the inside of the sleeve with synthetic material.

WELL EQUIPPED FOR ALL HARBOUR-RELATED PILING WORKS

HARBOURS

When it comes to installing foundations and quay walls for complex maritime projects, steel structures are the best solution. As a result of its unique design, the Hydrohammer® is perfectly suited to driving steel piles and essential for a successful installation.

SPECIAL SOLUTIONS

Driving clutched piles is possible with a specially designed clutch sleeve. With this sleeve, the use of a follower or dolly to drive clutched piles is no longer required, making pile driving more cost-effective and efficient. The clutch sleeve also reduces the weight by up to 10t, depending on the follower length. To prevent additional costs incurred as a result of damage to the coating of piles during pile driving, IHC IQIP can equip the inside of the sleeve with synthetic material.
BRIDGES

The foundations of a bridge are of critical importance. Not only must they support the entire weight of the bridge, they are also required to withstand dynamic loads, and be resistant to earthquakes. Over the past few decades, upscaling the sizes of bridges and their foundations has become necessary due to heavier traffic and increasing traffic flow.

LARGE DIAMETER PILES

For IHC IQIP, large diameter piles are common practice. Offshore, we have vast experience driving the biggest monopiles with a diameter of up to eight metres. We’ve taken this experience onto dry land, and are capable of driving any pile size required with our wide range of hammers and sleeves. Our S-600 Hydrohammer® is used frequently for bridge foundation works all over the world. One of the biggest hammers ever supplied for a bridge foundation project is the S-2000 Hydrohammer®.

SUPPLYING THE LARGEST HAMMER RANGE IN THE MARKET
When equipped with sheet legs, the Hydrohammer® is the perfect tool for driving sheet piles. The legs provide the required stability when driving sheet piles in a free-riding mode and eliminate the need for a leader. Many different types of profile can be driven this way, from single and double sheet piles to single and double H-beams, combi walls, and more.

POLYGONAL ANVIL

Another new development is the polygonal anvil. Its special shape enables it to drive a wide range of sheet piles with maximum coverage. This ranges from the small profiles, with a width of 500mm (for example, Hoesch L25) to the big profiles, measuring 700mm in width or 750mm.

We developed sheet legs for our S-30, S-40, S-70 and S-90 Hydrohammer® models. The solid one-piece upper section has a high rigidity. These sheet legs can be used with the polygonal anvil for double sheet piles, and with an anvil for single sheet piles.
ROCKBREAKING

Equipped with a chisel set, the Hydrohammer® becomes a highly effective and powerful rock breaker. It is able to produce the high impact force necessary for breaking rock, cemented layers, concrete floors and slabs.

CHISEL WITH HOUSING

The Hydrohammer® can be used as a rock breaker both on land and underwater. It is fitted with a special sleeve that features an internal anvil and a chisel. After being driven into the rock, the hammer and chisel are lifted and moved to the next spot. Delivering upward blows and lifting the hammer at the same time strongly facilitates the retraction of jammed chisels.

THE SYSTEM

To withstand heavy resistance, the Hydrohammer® must be properly guided in a leader-guide profile. This operating criterion secures the central alignment of the chisel and hammer for optimum energy transfer between ram/anvil and chisel. The position of this leader profile should be fixed during breaking and extracting.

OPERATING METHODS

Different types of handling equipment can be used to lift and position the rock breaker and leader profile, including a piling rig, excavator or backhoe, or a cutter dredger. The choice depends predominantly on the equipment available for/on the project, and on water depth.

ROCK HARDNESS

The average compressive strength that a normal cutter dredger can handle is 40MPa. To date, rocks with a hardness up to 180MPa have been successfully broken using an S-70 Hydrohammer® to punch vertical holes in a relatively level surface.
CAST-IN-SITU TECHNIQUE

1. The steel casing is placed on the steel cover plate
2. The steel casing is driven to final penetration level
3. A reinforcement cage is placed inside the (empty) steel casing
4. Concrete is poured inside the steel casing
5. The steel casing is extracted by force, in combination with small blows downwards – or even upwards
6. A concrete pile with a high bearing capacity is in place

ADVANTAGES CAST-IN-SITU

One of the unique features of the Hydrohammer® design – besides its sturdiness and high level of controllability – is its ability to facilitate the extraction of casings that have already been driven. This means that only one hammer is needed for both driving and extracting, making the Hydrohammer® ideal for handling cast in-situ (vibro) piles.

HIGH BLOW RATE WITH MINIMAL ENERGY

During extraction, the Hydrohammer® can achieve a blow rate of 280bpm with minimal energy. These small vibrations in the casing create the tractive force required to pull the casing out of the ground. In case of extremely high friction, the Hydrohammer® can even give upward blows to overcome the soil friction.

VERY ECONOMICAL AND HIGH BEARING CAPACITY

This technique is very economical compared to precast piles, since reinforcement is installed after tube installation instead of being designed with respect to transport and handling. On request, concrete can be delivered within a few hours by a concrete mixer truck, which prevents the storage of precast piles and makes it easier to reach the job site. The reinforcement of pile shaft can be increased at the top of the pile. Due to an increased end bearing and optimal friction along the shaft, a high bearing capacity is usually achieved. Allowable pile loads can be extremely high. Another advantage is that the adjustable pile length can be determined at the job site.
To ensure a safe working environment and minimise damage due to noise pollution when piling with the Hydrohammer®, IHC IQIP offers an optional noise reduction system. This consists of an enclosure at the point of impact, and bellow sections around the pile. The design was developed in collaboration with the Dutch research institute TNO. Noise levels can be reduced by 15dB(A), which is a great improvement for noise emission levels on today's construction sites. Our noise reduction system is available for free-hanging and leader-guided pile driving.

<table>
<thead>
<tr>
<th>Reduction in dB(A)</th>
<th>Reduction in sound power</th>
<th>Reduction experience by human ear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,25</td>
<td>25%</td>
<td>Not audible</td>
</tr>
<tr>
<td>3</td>
<td>50%</td>
<td>Just audible</td>
</tr>
<tr>
<td>10</td>
<td>90%</td>
<td>Half as much sound compared to the original sound</td>
</tr>
<tr>
<td>15</td>
<td>97%</td>
<td>Even less than half the sound compared to the original sound</td>
</tr>
</tbody>
</table>

Pipes and piles are usually driven vertically, but in some instances horizontal piling is the only way to go. Horizontal piling requires powerful tools to deliver the amount of driving power or cutting capacity needed. As a result of two unique features in the design of the hydraulically driven, double-acting Hydrohammer®, it is possible to operate under every inclination – even horizontally.

The Hydrohammer® is not only capable of installing piles and pipes horizontally, but it can also be used to remove disused piles and pipes from the ground.
EFFICIENCY HYDROHAMMER®

The correct choice of hammer can only be made after careful interpretation and assessment of the properties of the soil. To support clients, IHC IQIP employs a team of experienced engineers to assist them with pre- and post-pile driving analyses. These driveability studies are carried out using the most sophisticated computer programs (GeoWave). Driveability studies are performed for a best estimate but also take into account an upper bound situation. In the upper bound situation, a 30% higher soil resistance is taken into account. This gives a good indication of the expected driveability.

HAMMER CONTROL AND MONITORING
All hydraulic hammer functions are electronically controlled and monitored by our new generation control and monitoring system. This system focuses on automatic pile driving based on the desired pile velocity, blow rate and blow energy, making the system flexible and easy to use.

HIGHLIGHTS
• maximisation of equipment utilisation and efficiency
• wireless digital communication and control
• increasing equipment reliability and lifespan through comprehensive diagnostics
• data registration and reporting system for project data, settings, configuration and important measurements
• integration of documentation in the control system.

CUSTOMER PORTAL MIQIP
MIQIP is a globally connected platform that will provide you with operational intelligence on your foundation installation assets. Hammer operators, project managers and service crew now have direct access to all information needed for efficient and reliable reporting. MIQIP makes jobsite preparation possible from the comfort of your office. The portal provides an up-to-date transparent overview of the documentation and certification and enables you to easily push piling plans and equipment spreads configurations to the selected C-36 control units.

DRIVEABILITY
The correct choice of hammer can only be made after careful interpretation and assessment of the properties of the soil. To support clients, IHC IQIP employs a team of experienced engineers to assist them with pre- and post-pile driving analyses. These driveability studies are carried out using the most sophisticated computer programs (GeoWave). Driveability studies are performed for a best estimate but also take into account an upper bound situation. In the upper bound situation, a 30% higher soil resistance is taken into account. This gives a good indication of the expected driveability.

HAMMER COMPARISON
Most piling hammers are rated by their potential energy. However, the Hydrohammer® is rated by its kinetic energy. Furthermore, steel-to-steel energy transfer ensures an extremely high peak force in the pile. Therefore, it is incorrect to only compare hammers on (potential) energy.

In order to make an accurate comparison between the different hammer types, the actual ability of a hammer to overcome soil resistance is far more important than its rated energy. The below table compares energy between the different hammer types based on the driveability.

COMPARISON ON ENERGY NEEDED

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kNm</td>
</tr>
<tr>
<td>Steel to steel</td>
<td>30</td>
<td>40</td>
<td>70</td>
<td>90</td>
<td>120</td>
<td>150</td>
<td>200</td>
<td>280</td>
<td>350</td>
<td>500</td>
</tr>
<tr>
<td>Hydrohammer®</td>
<td></td>
</tr>
<tr>
<td>Diesel hammers</td>
<td>72</td>
<td>98</td>
<td>170</td>
<td>220</td>
<td>290</td>
<td>366</td>
<td>488</td>
<td>785</td>
<td>920</td>
<td>1220</td>
</tr>
<tr>
<td>Conventional hydraulic hammer</td>
<td>40</td>
<td>57</td>
<td>100</td>
<td>130</td>
<td>170</td>
<td>216</td>
<td>289</td>
<td>400</td>
<td>504</td>
<td>675</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kip</td>
</tr>
<tr>
<td>Steel to steel</td>
<td>22</td>
<td>30</td>
<td>52</td>
<td>66</td>
<td>89</td>
<td>111</td>
<td>148</td>
<td>207</td>
<td>258</td>
<td>369</td>
</tr>
<tr>
<td>Hydrohammer®</td>
<td></td>
</tr>
<tr>
<td>Diesel hammers</td>
<td>53</td>
<td>72</td>
<td>125</td>
<td>162</td>
<td>214</td>
<td>270</td>
<td>260</td>
<td>579</td>
<td>679</td>
<td>900</td>
</tr>
<tr>
<td>Conventional hydraulic hammer</td>
<td>30</td>
<td>42</td>
<td>74</td>
<td>96</td>
<td>125</td>
<td>159</td>
<td>213</td>
<td>295</td>
<td>372</td>
<td>498</td>
</tr>
</tbody>
</table>

THE HYDROHAMMER® CAN BE DRIVEN AT FULL ENERGY IN EVERY THINKABLE POSITION ABOVE AND UNDER WATER
The operating cycle begins with the lifting phase of the ram (the ram weight, ram pin and piston rod are forged into one piece). Here, valve P in the pressure line is opened and valve R in the return line is closed. When the preset stroke position is reached, the valves are automatically reversed, which allows the ram to start its downward stroke. The ram is accelerated by gravity and by the pressure of the gas above the piston and reaches a maximum acceleration of 2g. This reduces the maximum stroke that is required, and at the same time increases the blow rate of the hammer.

After impact, the cycle is repeated automatically. Due to the independently set acceleration force, the IHC Hydrohammer® can operate at any inclination – even horizontally. The hammer can operate either leader-guided or free-hanging.

HIGHLIGHTS

- **Energy transfer**
 Steel-to-steel energy transfer ensures extremely high peak force in the pile.

- **Material**
 Forged alloy steel guarantees durability.

- **Shock absorber**
 The robust and tested construction sustainably resists the reaction forces from the pile.

- **Auxiliary equipment**
 Can be equipped with rock breaker chisels, noise reduction bellows, and sheet piling and pile guides in all sizes.

- **Hammer control**
 Adjustable blow count per minute and impact energy.

- **Real time monitoring**
 Piling data is directly printed on site and/or stored to allow detailed analysis.

- **Environmentally friendly**
 Biodegradable oil can be used, and noise reduction is optimised with noise reduction packages.

- **Inclination**
 Easy to operate at full power at any inclination.

Weight

10-35% lighter than other hammer types due to accelerated ram weight.

Modular structure

Suitable for operation above and below the water.
TECHNICAL DATA

HAMMER S SERIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Max. blow energy</th>
<th>Min. blow energy*</th>
<th>Blowrate bl/min</th>
<th>Ram weight ton</th>
<th>Hammer weight ton</th>
<th>Length of hammer mm</th>
<th>Oil flow l/min</th>
<th>Power pack type</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-30</td>
<td>22,127</td>
<td>2,123</td>
<td>65</td>
<td>1.5</td>
<td>4</td>
<td>6,100</td>
<td>175</td>
<td>P 175</td>
</tr>
<tr>
<td>S-40</td>
<td>29,503</td>
<td>2,950</td>
<td>65</td>
<td>2.2</td>
<td>4.7</td>
<td>6,762</td>
<td>175</td>
<td>P 175</td>
</tr>
<tr>
<td>S-70</td>
<td>51,630</td>
<td>5,163</td>
<td>46</td>
<td>3.5</td>
<td>8.5</td>
<td>7,418</td>
<td>250</td>
<td>P 250</td>
</tr>
<tr>
<td>S-90</td>
<td>66,381</td>
<td>6,381</td>
<td>46</td>
<td>4.5</td>
<td>10.2</td>
<td>8,168</td>
<td>460</td>
<td>P 460</td>
</tr>
<tr>
<td>S-120</td>
<td>88,508</td>
<td>8,885</td>
<td>46</td>
<td>5</td>
<td>14.5</td>
<td>8,986</td>
<td>700</td>
<td>P 700</td>
</tr>
<tr>
<td>S-150</td>
<td>110,635</td>
<td>11,063</td>
<td>46</td>
<td>5</td>
<td>16.5</td>
<td>9,130</td>
<td>700</td>
<td>P 700</td>
</tr>
<tr>
<td>S-200</td>
<td>147,513</td>
<td>14,751</td>
<td>46</td>
<td>5</td>
<td>20</td>
<td>10,390</td>
<td>700</td>
<td>P 700</td>
</tr>
<tr>
<td>S-280</td>
<td>206,518</td>
<td>20,652</td>
<td>46</td>
<td>5</td>
<td>27</td>
<td>11,384</td>
<td>700</td>
<td>P 700</td>
</tr>
<tr>
<td>S-350</td>
<td>256,147</td>
<td>25,614</td>
<td>46</td>
<td>5</td>
<td>31</td>
<td>11,943</td>
<td>800</td>
<td>P 800</td>
</tr>
<tr>
<td>S-500</td>
<td>368,783</td>
<td>36,878</td>
<td>46</td>
<td>5</td>
<td>45</td>
<td>12,745</td>
<td>800</td>
<td>P 800</td>
</tr>
<tr>
<td>S-600</td>
<td>442,539</td>
<td>44,254</td>
<td>46</td>
<td>5</td>
<td>60</td>
<td>1600</td>
<td>1600</td>
<td>P 1600</td>
</tr>
</tbody>
</table>

*The standard minimal energy setting is about 10% of the hammer's maximum energy. When using the high frequency/low energy mode, the energy can be reduced to a minimum of 2% to 5%.

HAMMER SC SERIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Max. blow energy</th>
<th>Min. blow energy*</th>
<th>Blowrate bl/min</th>
<th>Ram weight S</th>
<th>Hammer weight S</th>
<th>Length of hammer ft</th>
<th>Oil flow g/min</th>
<th>Power pack type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC-110</td>
<td>81,132</td>
<td>8,113</td>
<td>45</td>
<td>17,416</td>
<td>16</td>
<td>18.88</td>
<td>581</td>
<td>O.R.</td>
</tr>
<tr>
<td>SC-150</td>
<td>110,635</td>
<td>11,063</td>
<td>45</td>
<td>24,250</td>
<td>19.5</td>
<td>21.75</td>
<td>871</td>
<td>O.R.</td>
</tr>
<tr>
<td>SC-200</td>
<td>147,513</td>
<td>14,751</td>
<td>45</td>
<td>29,982</td>
<td>25</td>
<td>18.8</td>
<td>871</td>
<td>O.R.</td>
</tr>
</tbody>
</table>

POWER PACK TYPE

<table>
<thead>
<tr>
<th>Model</th>
<th>Max. pressure psi</th>
<th>Max. oil flow g/min</th>
<th>Power hp</th>
<th>Length ft</th>
<th>Width ft</th>
<th>Height ft</th>
<th>Net. Weight lbs</th>
<th>Weight incl. fuel and oil lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-375</td>
<td>4,351</td>
<td>46</td>
<td>150</td>
<td>8.52</td>
<td>3.94</td>
<td>5.82</td>
<td>5,551</td>
<td>8,378</td>
</tr>
<tr>
<td>P-250</td>
<td>5,076</td>
<td>66</td>
<td>228</td>
<td>11.48</td>
<td>5.05</td>
<td>6.72</td>
<td>7,495</td>
<td>9,921</td>
</tr>
<tr>
<td>P-460</td>
<td>4,786</td>
<td>122</td>
<td>526</td>
<td>13.22</td>
<td>5.07</td>
<td>7.30</td>
<td>11,905</td>
<td>14,991</td>
</tr>
<tr>
<td>P-700</td>
<td>4,931</td>
<td>185</td>
<td>700</td>
<td>15.91</td>
<td>6.23</td>
<td>7.69</td>
<td>14,550</td>
<td>20,943</td>
</tr>
</tbody>
</table>

POWER PACK TYPE

<table>
<thead>
<tr>
<th>Model</th>
<th>Max. pressure bar</th>
<th>Max. oil flow l/min</th>
<th>Power kW</th>
<th>Length mm</th>
<th>Width mm</th>
<th>Height mm</th>
<th>Net. Weight lbs</th>
<th>Weight incl. fuel and oil lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-375</td>
<td>300</td>
<td>175</td>
<td>110</td>
<td>2,613</td>
<td>2,100</td>
<td>1,783</td>
<td>3,551</td>
<td>3,8</td>
</tr>
<tr>
<td>P-250</td>
<td>350</td>
<td>250</td>
<td>160</td>
<td>3,500</td>
<td>1,540</td>
<td>2,044</td>
<td>4,965</td>
<td>3.4</td>
</tr>
<tr>
<td>P-460</td>
<td>330</td>
<td>460</td>
<td>328</td>
<td>4,015</td>
<td>1,689</td>
<td>2,225</td>
<td>7,495</td>
<td>4.5</td>
</tr>
<tr>
<td>P-700</td>
<td>340</td>
<td>600</td>
<td>315</td>
<td>4,850</td>
<td>1,900</td>
<td>2,346</td>
<td>10,905</td>
<td>6.8</td>
</tr>
</tbody>
</table>

POWER PACK TYPE

<table>
<thead>
<tr>
<th>Model</th>
<th>Max. pressure bar</th>
<th>Max. oil flow l/min</th>
<th>Power kW</th>
<th>Length mm</th>
<th>Width mm</th>
<th>Height mm</th>
<th>Net. Weight lbs</th>
<th>Weight incl. fuel and oil lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-375</td>
<td>300</td>
<td>175</td>
<td>110</td>
<td>2,613</td>
<td>2,100</td>
<td>1,783</td>
<td>3,551</td>
<td>3,8</td>
</tr>
<tr>
<td>P-250</td>
<td>350</td>
<td>250</td>
<td>160</td>
<td>3,500</td>
<td>1,540</td>
<td>2,044</td>
<td>4,965</td>
<td>3.4</td>
</tr>
<tr>
<td>P-460</td>
<td>330</td>
<td>460</td>
<td>328</td>
<td>4,015</td>
<td>1,689</td>
<td>2,225</td>
<td>7,495</td>
<td>4.5</td>
</tr>
<tr>
<td>P-700</td>
<td>340</td>
<td>600</td>
<td>315</td>
<td>4,850</td>
<td>1,900</td>
<td>2,346</td>
<td>10,905</td>
<td>6.8</td>
</tr>
</tbody>
</table>

No rights may be derived from the specifications given in this brochure. Changes may be made at any time without notice as a result of product changes or updates. All specifications are stated with reservations for conversion or printing errors.
WHATEVER THE CHALLENGE
WE'RE ALWAYS CLOSE BY

LOCATIONS

EUROPE

THE NETHERLANDS
Sliedrecht

CROATIA
Rijeka

FRANCE
Verberie

GERMANY
Bremen

SLOVAKIA
Komárno

ROMANIA
Bucharest

UNITED KINGDOM
Newcastle
Stocksfield
Port of Blyth

AFRICA

RUSSIA
Moscow

NIGERIA
Lagos

SOUTH AFRICA
Cape Town

ASIA

P.R. OF CHINA
Beijing
Shanghai
Tianjin

REp. OF SINGAPORE
Singapore

INDONESIA
Jakarta

AUSTRALIA
Perth
Brisbane

MIDDLE EAST

NORTH AMERICA

P.R. OF CHINA
Beijing
Shanghai
Tianjin

USA
Broussard, LA
Houston, TX

REp. OF SINGAPORE
Singapore

SOUTH AMERICA

BRAZIL
São Paolo
Rio de Janeiro

URUGUAY
Montevideo

WE ALSO HAVE
AGENTS IN

ITALY

Canada
Portugal
India
Taiwan
Russia
Czech Republic
Slovakia
Japan
United Kingdom
United Arab Emirates
Philippines
Saudi Arabia
Egypt
Turkey
Korea

All rights reserved 2020. Reproduction in any form or by any means is not allowed without prior permission in writing from IHC IQIP B.V.